Bile acid-induced secretion in polarized monolayers of T84 colonic epithelial cells: Structure-activity relationships.
نویسندگان
چکیده
Bile acid epimers and side-chain homologues are present in the human colon. To test whether such bile acids possess secretory activity, cultured T84 colonic epithelial cells were used to quantify the secretory properties of synthetic epimers and homologues of deoxycholic acid (DCA) and chenodeoxycholic acid (CDCA). In our study, chloride secretion was measured as changes in short-circuit current (DeltaI(sc), in microA/cm2) with the use of voltage-clamped monolayers of T84 cells mounted in Ussing chambers. Bile acids were added at 0.5 mM, a concentration that did not alter transepithelial resistance. Data were expressed as peak DeltaI(sc) (means +/- SD). When added bilaterally, DCA stimulated a DeltaI(sc) response of 15.7 +/- 12.5 microA/cm2. The 12beta-OH epimer of DCA was less potent (DeltaI(sc) = 8.0 +/- 1.7 microA/cm2), whereas its 3beta-OH epimer had no effect. CDCA stimulated secretion (DeltaI(sc) = 8.2 +/- 5.5 microA/cm2), whereas both its 7beta-OH and 3beta-OH epimers were inactive, as was lithocholic acid. HomoDCA (1 additional side-chain carbon) was active (DeltaI(sc) = 7.8 +/- 4.8 microA/cm2), whereas norDCA (1 fewer carbon) and dinorDCA (2 fewer carbons) were not. Taurine conjugates of DCA and CDCA stimulated secretion (DeltaI(sc) = 12.3 +/- 7.5 and 8.8 +/- 4.8 microA/cm2, respectively) from the basolateral side but not the apical side. Uptake of taurine conjugates from the basolateral but not the apical side was shown by mass spectrometry. These studies indicate marked structural specificity for bile acid-induced chloride secretion and show that modification of bile acid structure by colonic bacteria modulates the secretory properties of these endogenous secretagogues.
منابع مشابه
Ursodeoxycholic acid attenuates colonic epithelial secretory function.
Dihydroxy bile acids, such as chenodeoxycholic acid (CDCA), are well known to promote colonic fluid and electrolyte secretion, thereby causing diarrhoea associated with bile acid malabsorption. However, CDCA is rapidly metabolised by colonic bacteria to ursodeoxycholic acid (UDCA), the effects of which on epithelial transport are poorly characterised. Here, we investigated the role of UDCA in t...
متن کاملYersinia enterocolitica-induced interleukin-8 secretion by human intestinal epithelial cells depends on cell differentiation.
In response to bacterial entry epithelial cells up-regulate expression and secretion of various proinflammatory cytokines, including interleukin-8 (IL-8). We studied Yersinia enterocolitica O:8-induced IL-8 secretion by intestinal epithelial cells as a function of cell differentiation. For this purpose, human T84 intestinal epithelial cells were grown on permeable supports, which led to the for...
متن کاملFarnesoid X receptor agonists attenuate colonic epithelial secretory function and prevent experimental diarrhoea in vivo.
OBJECTIVE Bile acids are important regulators of intestinal physiology, and the nuclear bile acid receptor, farnesoid X receptor (FXR), is emerging as a promising therapeutic target for several intestinal disorders. Here, we investigated a role for FXR in regulating intestinal fluid and electrolyte transport and the potential for FXR agonists in treating diarrhoeal diseases. DESIGN Electrogen...
متن کاملEffect of Helicobacter pylori on polymorphonuclear leukocyte migration across polarized T84 epithelial cell monolayers: role of vacuolating toxin VacA and cag pathogenicity island.
Helicobacter pylori infection can induce polymorphonuclear leukocyte (PMNL) infiltration of the gastric mucosa, which characterizes acute chronic gastritis. The mechanisms underlying this process are poorly documented. The lack of an in vitro model has considerably impaired the study of transepithelial migration of PMNL induced by H. pylori. In the present work, we used confluent polarized mono...
متن کاملLithocholic acid attenuates cAMP-dependent Cl- secretion in human colonic epithelial T84 cells.
Bile acids (BAs) play a complex role in colonic fluid secretion. We showed that dihydroxy BAs, but not the monohydroxy BA lithocholic acid (LCA), stimulate Cl(-) secretion in human colonic T84 cells (Ao M, Sarathy J, Domingue J, Alrefai WA, Rao MC. Am J Physiol Cell Physiol 305: C447-C456, 2013). In this study, we explored the effect of LCA on the action of other secretagogues in T84 cells. Whi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 292 1 شماره
صفحات -
تاریخ انتشار 2007